Pre-Images Preserve Inclusions

Pre-Images Preserve Inclusions

For \(f : X \to Y\) and \(B_1, B_2 \subseteq Y\)

\[ B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)\]
Proof
\[\begin{align*} x \in f^{-1}(B_1) &\iff f(x) \in B_1 \\ &\implies f(x) \in B_2 & \text{by assumption} \ B_1 \subseteq B_2 \\ &\iff x \in f^{-1}(B_2) \\ \end{align*}\]